A power system’s grounding scheme affects availability, reliability and safety.

Often, the addition of ground-fault detection systems, and sometimes conversion to a different system type, can enhance these aspects of any power system, usually with a significant return on the investment.

Bender offers cost-effective grounding and ground-fault detection systems with expertise across the range of commercial and industrial installations. Discover more about the different types of electrical power systems available and the advantages and disadvantages of each:

1. Power System Grounding Methods

A. Solidly Grounded

In solidly grounded systems, the neutral point of a power system is connected to earth with a low-impedance conductor, allowing high ground-fault current levels.

B. High Resistance Grounded (HRG)

The neutral point of an HRG system is grounded through a resistor that limits ground-fault current and controls ground-fault voltage on driven equipment.

C. Ungrounded

In ungrounded systems, there is no purposeful connection to ground. In the event of a ground fault, only a small leakage current, essentially caused by system leakage capacitances, can flow.
2. What are the advantages of each system grounding method?

<table>
<thead>
<tr>
<th>A. Solidly Grounded</th>
<th>B. High Resistance Grounded (HRG)</th>
<th>C. Ungrounded</th>
</tr>
</thead>
<tbody>
<tr>
<td>▪ Faults are readily detected and isolated quickly by circuit protective devices.</td>
<td>▪ Limits the ground fault current to a low level—no additional equipment damage.</td>
<td>▪ Very low level of current flow for phase-to-ground faults.</td>
</tr>
<tr>
<td>▪ Easily identify and selectively trip the faulted circuit; May maintain continuity of service for remaining circuits.</td>
<td>▪ Easily identify the faulted circuit; continue to operate or selectively trip faulted load.</td>
<td>▪ There is no Arc Flash risk for a phase-to-ground fault.</td>
</tr>
<tr>
<td>▪ No possibility of transient overvoltages(^1), which can damage critical equipment.</td>
<td>▪ No possibility of transient overvoltages which can damage critical equipment.</td>
<td>▪ No ground-fault trips; Maintains continuity of service for entire electrical system.</td>
</tr>
<tr>
<td>▪ There is no Arc Flash(^2) risk for a phase-to-ground fault.</td>
<td>▪ Allows for planned maintenance, repair and operations capability due to an electrical ground-fault.</td>
<td>▪ Lower probability of phase-to-ground faults escalating to phase-to-phase or 3-phase fault.</td>
</tr>
<tr>
<td>▪ Allows for planned maintenance, repair and operations capability due to an electrical ground-fault.</td>
<td></td>
<td>▪ Allows for planned maintenance, repair and operations capability due to an electrical ground-fault.</td>
</tr>
</tbody>
</table>

\(^1\) Transient overvoltage: while rare, an intermittent ground fault can cause all phases of a power system to elevate, up to 10 times system voltage, above ground potential. Equipment damage results.

\(^2\) Arc Flash: explosive release of energy when current arcs through air between conductors. Catastrophic equipment damage, plant burn-down, and personnel injury are possible.

\(^1\) IEEE Recommended Practice for Protection and Coordination of Industrial and Commercial Power Systems (IEEE Buff Book), 2001. pp.8.2.5, 8.3.3.

3. What are the disadvantages of each system grounding method?

A. Solidly Grounded
- Severe risk for Arc Flash and high values of fault current.
- Potential for severe and expensive equipment damage.
- Low-level early-stage ground faults are often not detected.
- May trip entire facility instead of contributing ground-fault circuit.
- Unplanned interruption of production lines or critical processes and extended downtime.

B. High Resistance Grounded (HRG)
- High frequencies or harmonics can appear as nuisance alarms on monitoring systems.
- Ground faults may be initially left on the system for an extended period of time.
- Not suitable for single-phase loads (e.g., lighting).

C. Ungrounded
- Transient overvoltages are uncontrolled.
- Cost of system maintenance can be higher due to downtime and labor which are involved with physically identifying the contributing fault.
4. How to mitigate the disadvantages or risks of each type of system.

<table>
<thead>
<tr>
<th>A. Solidly Grounded</th>
<th>B. High Resistance Grounded (HRG)</th>
<th>C. Ungrounded</th>
</tr>
</thead>
</table>
| 1. Severe risk for Arc Flash Hazards and high values of fault current:
 i. Ability to limit ground-fault current to 5A or less.
 ii. No Arc Flash Hazard for phase-to-ground fault. | 1. High frequencies or harmonics can appear as nuisance alarms:
 a. Implement Bender Neutral Grounding Resistor Monitor (NGRM) devices to monitor the continuity, open and short conditions with harmonic filtering of the electrical system.
 2. Ground faults may be left on system for extended period of time:
 a. Implement NGRM devices to monitor the continuity, open and short conditions with harmonic filtering of the electrical system. | 1. Transient overvoltages are uncontrolled:
 2. Cost of system maintenance can be higher due to downtime and labor which are involved with physically identifying the contributing fault:
 a. Implement Bender Insulation Monitoring Device (IMD) and Earth Detection System (EDS) to identify and locate ground faults in real-time. |
| 2. Potential for severe and unrepairable equipment damage and low-level early-stage ground faults are often not detected:
 a. Implement Residual Current Monitoring (RCM) devices.
 i. Allows for selective coordination, low-level ground-fault detection and individual trip levels to be established. | | |
| 3. Unplanned interruption of production process/downtime:
 a. Implement RCM Devices.
 i. Allows for selective coordination, low-level ground-fault detection and individual trip levels to be established.
 ii. Allows for immediate identification of the circuit which is contributing to the ground fault and lowers the cost of downtime. | | |
| b. Convert to HRG. | | |
A. Solidly Grounded

- Ground-fault interruption in single- or three-phase AC systems up to 600V and 100A
- Suitable for systems with mixed AC/DC components, such as Variable Frequency Drives (VFD)
- Enclosure options include NEMA 4X polycarbonate, NEMA 4X stainless steel, and non-enclosed
- Available in a 6-mA fixed trip level with UL 943 inverse time characteristic

B. High Resistance Grounded (HRG)

- Adjustable ground-fault trip level and time delay
- Monitor integrity of ground conductor with E6-series termination module
- Two Form-C (SPDT) relay outputs are separately configurable to trigger on a pre-warning or main alarm
- Trailing cable monitor used for mobile or moveable loads

C. Ungrounded

- Insulation monitoring for ungrounded circuits from 0-300 VAC/DC
- Two Form-C (SPDT) relay outputs are separately configurable to trigger on a pre-warning or main alarm
- AC/DC control circuits in the industrial sector, mechanical engineering, power plants, elevators and automation systems

RCM420
AC Ground-Fault Monitor

- Ground-fault pick up levels are adjustable from 10 mA to 10 A (AC Systems Only)
- Two Form-C (SPDT) relay outputs are separately configurable to trigger on a pre-warning or main alarm
- Three separately adjustable time delays are available – pickup delay, startup delay and delay on reset

RCMA420
AC/DC Ground-Fault Monitor

- Ground-fault pickup levels are adjustable from 10 mA to 500 mA (AC/DC Systems)
- Two Form-C (SPDT) relay outputs are separately configurable to trigger on a pre-warning or main alarm
- Three separately adjustable time delays are available – pickup delay, startup delay and delay on reset

RC48N
Ground Fault & NGR Monitor

- Ground-fault detection
- Pulsing
- Analog metering
- Compact wall mount design

Series 1
HRG System

IR420
Insulation Monitor

- Insulation monitoring for ungrounded circuits from 0-300 VAC
- Two Form-C (SPDT) relay outputs are separately configurable to trigger on a pre-warning or main alarm
- AC control circuits in the industrial sector, mechanical engineering, power plants, elevators and automation systems

Series 2
HRG System

IR425
Insulation Monitor

- Insulation monitoring for ungrounded circuits from 0-300 VAC/DC
- Two Form-C (SPDT) relay outputs are separately configurable to trigger on a pre-warning or main alarm
- AC/DC control circuits in the industrial sector, mechanical engineering, power plants, elevators and automation systems

LifeGuard®

- Open & shorted NGR detection
- Monitors integrity of NGR using active and passive methods – works when the system is online or offline

Series 1
HRG System

IR425
Insulation Monitor

- AC/DC ground-fault protection/detection to properly monitor non-linear loads
- Preventative maintenance – sensitive ground-fault pickup levels allow early warning of insulation degradation
- Simplified design - Controls pulsing contractor in pulsing HRG systems

Series 2
HRG System

IR420
Insulation Monitor

- Detects AC and DC, symmetrical and asymmetrical ground faults in ungrounded systems
- Ideal for systems with variable frequency drives
- Adjustable alarm values up to 10 MΩ
- Modbus/TCP communication included

ISO685-D
Insulation Monitor

- Preventative maintenance – sensitive ground-fault pickup levels allow early warning of insulation degradation
- Simplified design - Controls pulsing contractor in pulsing HRG systems

- AC/DC ground-fault protection/detection to properly monitor non-linear loads
- Integrated web server, Modbus TCP/IP, and Modbus RTU
Advanced

RCMS490
12-Channel AC/DC Ground-Fault Monitor

- Ground-fault pick up levels are adjustable from 6 mA to 20 A (AC/DC Systems)
- Ground-fault monitoring for up to twelve separate systems or channels
- The on-board LCD display shows a detailed system overview, including a chart showing measured ground-fault current in real-time, individual alarm messages for each channel, and an easy-to-use menu for adjusting settings

Modular/Portable

RCMB300 SERIES
AC/DC Ground-Fault Monitor w/CT

- Ground-fault pick up levels are adjustable from 5 mA to 20 A (AC/DC Systems)
- Modular design with current transformer between 20 mm to 210 mm in diameter
- Frequency range from DC to 100 kHz (Ideal for Inverters and Energy Storage Systems)
- RS-485 interface with Modbus RTU

NGRM700
NGR Monitor

- All NGRM500 features in a different form factor plus:
 - Detachable HMI
 - Phase-to-phase and phase-to-ground voltage monitoring
 - Designed for operation in extreme environments including an altitude rating of 5,000 meters above sea-level
- Program & display information without opening doors using door-mounted HMI
- Network communications

EDS3090 Series
Portable Ground-Fault Locator

- Quickly locate and identify ground faults with portable equipment
- Hand-held EDS3090 fault locator can be used in combination with permanently installed Bender ground-fault monitoring equipment
- Two sizes of split-core clamps included
- Ideal for contract service technicians and facilities with preventative maintenance programs
- Detects AC and DC, symmetrical and asymmetrical ground faults in ungrounded systems
- Ideal for systems with variable frequency drives
- Adjustable alarm values up to 10 MΩ
- Modbus/TCP communication included
- Earth Detection System Pulse

iso685-D-P
Insulation Monitor

- Use in combination with a Bender ground-fault detector to locate the fault on up to 12 channels per module
- Automate fault location while the system remains online, greatly reducing time required to find ground faults
- Get fast notification of located faults over Ethernet or Modbus/TCP

EDS440
Ground-Fault Locator

- Quickly locate and identify ground faults with portable equipment
- Hand-held EDS3090 fault locator can be used in combination with permanently installed Bender ground-fault monitoring equipment
- Two sizes of split-core clamps included
- Ideal for contract service technicians and facilities with preventative maintenance programs
Bender is located in 70 countries around the world!